Climate vulnerability assessment of streams and the adaptation potential within the TRCA jurisdiction

Jonathan Ruppert, David Lawrie, & Namrata Shrestha

Presented by: Jonathan Ruppert, Research Scientist, E&CS

April 21, 2021

- 1. Quick Introduction (Bio)
- 2. Introduction: key issues & objectives
- 3. Approach/analysis
- 4. Patterns of thermal temperature and resulting fish communities
- 5. Significance: Prioritization of enhancements and restoration for desirable aquatic outcomes
- 6. Conclusions & Future Work

Jonathan Ruppert

Research Scientist, Ecosystem and Climate Science, Watershed Planning & Ecosystem Science, TRCA

Adjunct Professor, Ecology & Evolutionary Biology, University of Toronto, St. George Campus

Research Areas

- 1. Conservation & Strategic Planning
- 2. Connectivity
- 3. Compensation & Mitigation

jonathan.ruppert@trca.ca

- 1. Quick Introduction (Bio)
- 2. Introduction: key issues & objectives
- 3. Approach/analysis
- 4. Patterns of thermal temperature and resulting fish communities
- 5. Significance: Prioritization of enhancements and restoration for desirable aquatic outcomes
- 6. Conclusions & Future Work

Many stressors acting at multiple spatio-temporal scales in the GTA

Natural processes that filter local community composition & biodiversity collectors course particulate matter smallmout shredder microbes credators vascular hydrophyt 1980 COURS particulate matter particulate matter

microbes

(From Vannote et al., 1980)

collector

zooplankton

Relative Channel Width

Instream Thermal Regime Drivers of Change

Climate Change

Ruppert et al. (In Prep)

Land Use Change

Dugdale et al. 2018 Science of the Total Environment

Freshwater Ecosystems & Temperature Regimes

- Fish and Benthic Invertebrates are ectotherms
- Aquatic species & communities have adapted to exploit different thermal regimes (ecological niches)
- A diversity of thermal regimes, supports a diversity of species and communities within freshwater systems

Objectives

- 1. Determine the potential change in the thermal regime of streams within the Toronto region with climate and land use change
- 2. Assess whether there are distinct cold, cool, and warm water fish communities
- 3. Identify where can you prioritize climate adaptation efforts on the landscape

- 1. Quick Introduction (Bio)
- 2. Introduction: key issues & objectives
- **3.** Approach/analysis
- 4. Patterns of thermal temperature and resulting fish communities
- 5. Significance: Prioritization of enhancements and restoration for desirable aquatic outcomes
- 6. Conclusions & Future Work

Process to address objectives

Data, Reach Contributing Areas and RWMP Sampling

- Toronto and Region Conservation Authority jurisdiction
- 125 Ha drainage lines; Reach Contributing Areas (n = 1,003)
- RWMP data (Fish and Temperature; 2001-2017)
- Average decadal (2001-2009; 2010-2017) MWAT temperature records (n = 265) paired with fish data (OSAP; n = 243)
- Median ensemble climate projections of maximum temperatures (RCP 2.6, 4.5 and 8.5)

Scenarios & Model

- Three median ensemble climate projections of maximum temperatures (RCP 2.6, 4.5 and 8.5)
- Three land use scenarios (current, future OP and future aggressive)
- Simple linear regression to predict Maximum Weekly Average Temperature (MWAT)

Response	Predictors
MWAT	Percent Forest (RCA & UCA)
	Discharge (RCA & UCA)
	Slope
	Stream Order (Shreve)
	RCA Area
	Maximum Air Temperature

Land use scenarios

Ruppert et al. (In Prep)

- 1. Quick Introduction (Bio)
- 2. Introduction: key issues & objectives
- 3. Approach/analysis

4. Patterns of thermal temperature and resulting fish communities

- 5. Significance: Prioritization of enhancements and restoration for desirable aquatic outcomes
- 6. Conclusions & Future Work

Mean Reach Contributing Area Instream Temperature (MWAT)

Spatial variability in MWAT by 2100

Mean MWAT for prevalent species

Mean MWAT (+/- 95%Cl)

n = 25 species present in > 5% of sites

Fish community differences across thermal regimes

Significant differences found in fish communities related to thermal regime

- 1. Quick Introduction (Bio)
- 2. Introduction: key issues & objectives
- 3. Approach/analysis
- 4. Patterns of thermal temperature and resulting fish communities
- 5. Significance: Prioritization of enhancements and restoration for desirable aquatic outcomes
- 6. Conclusions & Future Work

Vulnerability of thermal regimes

- Currently (2010-2017) cool water reaches are the most common (warm – 61; cool – 845; cold – 97)
- Type of thermal regime related to both climate and land use scenario
- Warm water reaches respond the most to climate scenario (highest with RCP 8.5)
- Cool water reaches sensitive to both climate and land use
- Cold water reaches do not exist in the worst climate scenario none exist (RCP 8.5)

Climate adaptation priority areas

- Climate scenario that is most likely is RCP 4.5 or higher
- Land use scenario that is most likely is Official Plans (~30%)
- Cold-water habitat is the most at-risk
- Focus on cold water areas with both long (2100) and medium (2050) term (gain and/or maintain)

High Priority (2050 & 2100)

- 93 RCAs
- 7,720 ha Forest required

Medium Priority (2050 only)

- 130 RCAs
- 8,490 ha Forest required

- 1. Quick Introduction (Bio)
- 2. Introduction: key issues & objectives
- 3. Approach/analysis
- 4. Patterns of thermal temperature and resulting fish communities
- 5. Significance: Prioritization of enhancements and restoration for desirable aquatic outcomes
- 6. Conclusions & Future Work

Conclusions

- Forest cover and Air Temperature will significantly impact the future availability of thermal habitat types
- Cold-water fish communities are the most at-risk under future climate (RCP 4.5 and 8.5) & natural cover scenarios
- Cool-water fish communities are also at-risk under more aggressive climate scenarios (RCP 8.5)
- Adaptation measures to future climate (e.g., restoration, strategic natural heritage planning) can have a positive impact on biodiversity conservation efforts
- One knowledge gap is the impact of **stormwater infrastructure** on thermal regimes
- Further OPs don't go to year 2100 and are dynamic

Implications: Integration of aquatic needs/ priorities in NHS development

- Natural Heritage System (NHS) update ongoing at TRCA
- Integration of water resource system (Key Hydrologic Features & Key Hydrologic Areas)
- <u>Current gap is aquatic ecological needs/priorities</u>

Key Overall Objectives:

- 1. Incorporate aquatic ecological values into NHS scenarios
- 2. Identify areas where establishment of NHS provides habitat for maintaining/improving aquatic biodiversity

Multi-scale system approach

Broad (jurisdiction) scale: climate & land use change risk to maintaining fish habitat within aquatic ecosystems; provide insight into adaptation and conservation prioritization.

↑↓

Medium (reach) scale: assess cumulative impacts of stormwater infrastructure and develop forecasting tool.

Fine (stormwater catchment) scale: specific designs within LID, SWMP catchments to identify ecological benefits and losses with development.

Acknowledgements

Cindy Chu Marie-Josée Fortin Jamie Duncan

jonathan.ruppert@trca.ca

www.trca.ca