ECS Lunch and Learn

Supporting internal knowledge transfer within TRCA

November 10, 2020

TRCA's Recent Floodplain Mapping Updates

Wilfred Ho*, Christina Bright*, Mike Todd**

* Flood Risk Management, Development & Engineering Services

** Information Technology & Records Management

November 10, 2020

Presentation Outline

- 1. Floodplain Mapping (FPM) What is it and why do we do it?
- 2. FPM How do we do it?
 - 1. Hydrological Modelling
 - 2. Hydraulic Modelling
 - 3. Mapping
- 3. What have we done recently?

The information contained in this presentation is copyright © Toronto and Region Conservation Authority

What is Floodplain Mapping?

Floodplain Map: Riverine flood extents of a storm event – most commonly done for the Regulatory storm (greater of 100-yr storm or Regional storm (Hurricane Hazel)

Why do we undertake FPM updates?

- Provincially delegated responsibility to represent the province interests on natural hazards which includes flood hazards
- Mapping and modelling must comply with standards established by the Province
- Determines regulatory flood hazard limits
- Informs municipal landuse, emergency management, and infrastructure planning

Recent FPM Updates

- Initiated in 2016 and further accelerated by National Disaster Mitigation Program (NDMP) Funding
- Mapping updates involved a multi-phased approach

These phases were undertaken over the last few years for many of TRCA's watersheds

Basic workflow

Event Data – Point Gauges

Terrain Data – LiDAR DEM

Catchments and Drainage Features

Soils

Soils (Supplemental)

Soils (Supplemental)

Geological Features

Geological Features

Anthropogenic Features

Anthropogenic Features

Land Use and Natural Cover

Artificial Reservoirs - SWM Ponds

Artificial Reservoirs - Dams

Conveyance Elements

Model Build

Calibration

Date/Time

28 Mon

27 Sun

2014 Jul

29 Tue

30 Wed

Validation

Flood Frequency

Design Storm Selection

SHORT DURATION RAINFALL INTENSITY - DURATION FREQUENCY DATA FOR TORONTO CITY GAUGE 6158355 BASED ON RECORDING RAIN GAUGE DATA FOR THE PERIOD - 1940 - 2017

Updated IDF Curve for Toronto City Gauge 6158355

Hydraulic Modelling

- Simulates the flow of water through a stream corridor & associated floodplain
- Representation of the physical characteristics of the stream corridor
- Provides water surface elevations for the various flows modelled

Inputs - Flows & Boundary Conditions

Flow Change Location				Profile Names and Flow Rates						
	River	Reach	RS	REG	100Y	50Y	25Y	10Y	5Y	2Y
1	Brougham Creek	Reach 4	5024.9	12.97	2.64	2.27	1.92	1.48	1.17	0.73
2	Brougham Creek	Reach 4	3303.71	18.43	3.75	3.22	2.73	2.1	1.66	1.03
3	Brougham Creek	Reach 4	2020.84	21.18	4.31	3.7	3.14	2.41	1.9	1.18
4	Brougham Creek	Reach 3	61.92	36.52	7.43	6.39	5.41	4.16	3.28	2.04
5	Brougham Creek	Reach 2	580.4	48.76	9.91	8.53	7.22	5.56	4.38	2.73
6	Brougham Creek	Reach 1	1645.81	72.04	15.88	13.67	11.59	8.94	7.06	4.4
7	Brougham Creek	Reach 1	990.45	75.38	16.61	14.3	12.13	9.36	7.39	4.6
8	Brougham Trib A	Trib A1	2159.01	29.11	6.74	5.82	4.94	3.82	3.02	1.89
9	Brougham Trib A	Trib A1	1840.34	29.11	6.74	5.82	4.94	3.82	3.02	1.89
10	Brougham Trib A	Trib A1	770.82	29.56	6.7	5.78	4.91	3.8	3	1.87
11	Brougham Trib B	Trib B1	417.48	1.45	0.29	0.25	0.21	0.17	0.13	0.08
12	E Duffins Trib A	East A1	515.88	1.48	0.3	0.26	0.22	0.17	0.13	0.08
13	E Duffins Trib B	East B1	1888.94	2.41	0.49	0.42	0.35	0.27	0.21	0.13
14	E Duffins Trib C	East C1	1364.13	3.72	0.78	0.67	0.57	0.43	0.34	0.21
15	E Duffins Trib D	East D1	647.41	0.77	0.16	0.14	0.12	0.09	0.07	0.04
16	E Duffins Trib D	East D1	282.59	1.18	0.25	0.21	0.18	0.14	0.11	0.07
17	E Duffins Trib E	East E1	3170.84	6.92	1.36	1.19	1	0.76	0.6	0.37
18	E Duffins Trib E	East E1	1947.71	8.97	1.76	1.54	1.3	0.99	0.77	0.48
19	E Duffins Trib F	East F1	955.93	1.12	0.22	0.19	0.16	0.12	0.1	0.06
20	E Duffins Trib F	East F1	669.16	2.14	0.42	0.37	0.31	0.24	0.18	0.11
21	E Duffins Trib G	East G1	2020.55	6.28	1.23	1.08	0.91	0.69	0.54	0.34
22	E Duffins Trib H	East H1	2726.99	33.25	6.54	5.6	4.73	3.61	2.83	1.74
23	E Duffins Trib I	East I1	516.74	8.98	1.74	1.5	1.26	0.97	0.76	0.47
24	E Duffins Trib J	East J1	1004.76	16.96	3.29	2.83	2.39	1.83	1.44	0.88

Inputs - Topography

2060.938

<<u>12.99</u>

1910.938

2

Description ::xtents for

647789.79, 485

Cross Section

File Options Help

Cross Section

Reach: Reach 1

105

100

95

90

75

100

200

300

Station (m)

400

20 Area Mann n Regions Pump Station RS

Drawing layer: Default Drawing Layer

🗹 🥖 Default Drawing Layer

View Tables Tools GIS Tools Helt

SA/20 Area SA/20 Area 20 Area Conn BC Lines BreakLines

✓ I HEC-RAS

rouge_rev

Edit Ontions

Junc

•

aterai

Storage Area 2DFlow Area SA/2D Are Com Pump Station

Data Explorer

500

600

Levee Ineff Bank Sta

700

Inputs - Channel Resistance

Standard Manning's Roughness Coefficients for TRCA Watershed Hydraulic Modelling							
Land Use Description and Conditions							
Channel Compo	pnent						
Watercourse/ Channel	/ • low flow channel 0.035 • extends typically from bank to bank						
Hydraulic • culvert crossings (e.g., corregated metal, concrete open/closed footing etc.) Variable ² • bridge crossings • bridge crossings • bridge crossings							
Floodplain Com	ponent						
Urban Uses (Impervious)	Urban Uses (Impervious) • Road crossings, existing parking lots or any large impervious surfaces etc. 0.0 • typically located within valley and stream corridors • Does not include structures or buildings (to be modelled using available ineffective flow area options) ^a 0.0						
Urban Uses (Pervious) Existing uses including municipal parks, playing fields, golf courses etc. • typically located within valley and stream corridors • Regular maintenance of area is required							
Natural Areas	Pasture, meadow, agricultural, riparian vegetation, brush and forest located within urban and/or rural land use setting typically located within valley and stream corridors <u>Not</u> subject to regular maintenance Assumes regeneration of open space type uses including pasture, meadow and agricultural uses within floodplain areas (Consistent with TRCA's VSCMP and Natural Heritage Strategies)	0.080					
Flood Control Channels	 Flood control channels and associated works designed specifically for flood flow conveyance (eg., trapezoidal lined and un-lined channels etc.) "n" value based on original design or maximum allowable value determined through a sensitivity analysis Regular maintenance of area <u>is</u> required 	Variable ²					

otes: 1. Manning's "n" values represent average values based on literature data assuming flooding conditions. 2. Refer to HEC-2 and/or HEC-Ras User's Manual for further details.

Inputs - Hydraulic Constraints

Hydraulic Modelling – 1D Models

- Flow is one-dimensional
- Utilizes cross-sections to represent ground and structures
- Fast and relatively straight forward
- Vast majority of TRCA floodplain mapping done in 1D

Building the Model Skeleton

Adding Cross Section Details

Adding Structures

Toronto and Region Conservation Authority 40

Special Cases – Complex Structures PCSWMM

	Downsti	ream Boundar	y Conditions	Upstream BC	oundary Conditions	Flow Data	Interior Change Gati	e Openings	
ſ	C Select in	nterior location							
	River na	er name: Millers Creek		•					
	Reach name: Rea River station: 106		Reach 1 💌						
			10644.96	•	▼ Pick				
	Profile:		Not Selected	•	Add Change Lo	cation			
		River Name	Reach	Name	River Station	Profile	Change Type	Value (m)	
	1	Millers Creek	Reach	1	884.1763	100Y	Known WSEL	 83.33 	
	2	Millers Creek	Reach	1	884.1763	10Y	Known WSEL	▼ 82.66	
	3	Millers Creek	Reach	1	884.1763	25Y	Known WSEL	▼ 82.94	
		Millorr Crook	Peach	1	994 1763	2V	Known WISEI	 92.14 	

50Y

Known WSEL

Known WSEL

▼ 83.14

▼ 82.39

[0 Profiles

Toronto and Region Conservation Authority 41

884.1763

884,1763

Millers Creel

Millers Creek

Other Data

Reach 1

Reach

Special Cases – Routing & PCSWMM

Figure 2-3 Storage Feature coded into Rouge River hydrology model

Figure 2-4 Outlet Feature coded into Rouge River hydrology model

Adding Flows

Hydraulic Modelling - Outputs

- Expected elevation of the river at various points
- Water depth, velocity, other hydraulic outputs
- This gets mapped to determine the extent of flooding

Hydraulic Modelling – 2D Models

- Flow is 2D and is fully hydrodynamic
- Dense network of grid or mesh describes ground
- User does not dictate flow direction
- Long run times, can be unstable
- Niche skillset to setup and modify models

Hydraulic Modelling – 1D vs 2D

- 1D appropriate in most cases
- 2D good for: Situations where flow direction is unknown, complex interactions, flood characterization and visualization
- 2D also good for: enhanced risk characterization for Special Policy Areas (SPAs)

Some Example Outputs

1D & 2D modelling

Production of Flood Plain Maps

3 main components of map production

- Create base mapping
- Delineate flood line
- Create flood plain map

Create Base Mapping

- Main elements of base mapping
 - ground elevation data
 - planimetric features (buildings, roads, watercourse, railway, etc.)
- Ground Elevation data
 - Digital Elevation Model (DEM) 2014/2015 LiDAR dataset
 - Use classified bare earth returns to create a DEM with 1m grid resolution
 - Acquisition of elevation data captured by LiDAR in 2019 allowed creation of custom DEM to incorporate changes in the landscape from 2015
 - Contours and spot elevation points
- Planimetric features (buildings, curbed roads, watercourse, railway)
 - These datasets can be acquired from regional or municipal partners or purchased from mapping vendor
 - Can be a challenge since our watersheds can span over multiple jurisdictions (municipal, regional) making datasets inconsistent, with regards to collection dates, method of capture, data quality and sometimes no collection at all.

Conditioning of Ground Data

- Contours generated from points collected by LiDAR are messy and are smoothed for cartographic representation
- Contours need to be trimmed at bridges to ensure correct deck elevation
- Spot elevations placed at appropriate location

Other Cartographic Considerations

- Watercourse aligns with contours
 - Ensure that the watercourse follows the contours, should follow the lowest point
 - Need to make manual adjustments as necessary
 - Measure the width of watercourse to determine single or double symbology
 - Flow direction symbology
- Roads –curb line
 - Roads in mapping are not a centre line, and have width. These are not always up to date from municipality.
 - Digitizing is necessary if this type of layer is not available

GAMBLE ROAD

1275.6

Delineation of Flood line

- Flood line output from modelling software is not acceptable as is
- Must undergo QA/QC process to ensure correct delineation of flood line, human interpolation is required
- More discussion for standardizing this process is required

Final Map Production

Once the hydraulic model has been finalized and the flood line delineation has been reviewed by the sealing engineer, final map production can commence.

- Export cross section features from model and extract the necessary information for mapping: section ID and water surface elevations
- Create labels for all features
 - Creating labels is an automated process, however, this does not produce a fully complete result. Manual adjustment is required
- Create title block with metadata
- Final mapping to Engineer for digital seal
- Approval of flood plain map
 - Administer mapping to network and 3rd party resellers
 - Create layers for web maps
 - Update data on website

Final Flood Plain Map

Flood Plain Mapping Updates 2016-2020

- ✓ 8/10 watersheds updated
- ✓ Modelled ~1700 km of watercourse
- ✓ 24 514 HECRAS cross sections produced
 - ~15 000 ha of flood plain mapped
- ✓ ~45000 ha mapping produced

Recent (2016-2020) FPM Updates

Watersheds	Hydrology Model	Hydraulic Model	Mapping Updated	Notes:
	Updated?	Updated?	?	
Etobicoke Creek	No	Partial	Partial	Spring Creek extension – 2D Model;
Mimico Creek	Yes*	Yes	Yes	-
Humber River	Yes	Yes	Yes	Albion Creek 2D; Caledon East 2D; Rockliffe SPA 2D
Don River	Yes	Yes	Yes	Lower Don 2D;
Highland Creek	Yes	Yes	Yes	-
Rouge River	Yes	Yes	Yes	Unionville SPA 2D
Petticoat Creek	Yes	No	No	-
Frenchman's Bay	No	No	No	-
Duffins Creek	No	Yes	Yes	Pickering Ajax SPA 2D Study
Carruthers Creek	No	Yes	Yes	Lower Carruthers 2D

* Although hydrology was updated, this information was not used in the hydraulic model update

Recent FPM Updates – 2016 to 2018

Project Title	Date	NDMP Project	Hydraulic Modelling Approach	Notes:
Etobicoke Creek Floodplain Mapping Update	2016	No	1D	
Yonge St. and Elgin Mills Road Floodplain Mapping Update	2016	No	2D	Significant cost savings by leveraging modelling work completed by the City of Richmond Hill for Yonge and Elgin Mills Flood Remediation Environmental Assessment
Downtown Brampton Floodplain Mapping Update	2017	No	1D	
Lower Humber River 2D Modelling Study	2015 / 2017	No	2D	Revised in 2017
Pickering and Ajax SPA 2D Modelling Study	2018	Yes	2D	
Black Creek at Rockcliffe SPA 2D Modelling Study	2018	Yes	2D	
Humber River in Peel Region Floodplain Mapping Update	2018	No	1D and 2D	2D MIKE Flood model was developed for Caledon East.
Humber River in the City of Toronto Floodplain Mapping Update	2018	Yes	1D and 2D	2D MIKE Flood model was developed for Albion Creek.

Recent FPM Updates – 2019 to 2020

Project Title	Date	NDMP Project	Hydraulic Modelling Approach	Notes:
Spring Creek 2D Model Extension	2019	Yes	2D	
Carruthers Creek Floodplain Mapping Update	2019	Yes	1D and 2D	First comprehensive floodplain mapping update completed in-house. 2D MIKE Flood model developed for the Lower Carruthers Creek through the Pickering Beach Community.
Humber River in York Floodplain Mapping Update	2019	Yes	1D	
Unionville SPA 2D Modelling and Floodplain Mapping Update	2019	Yes	2D	Communicated to the Board at meeting #5/19, on Friday, May 24, 2019
Highland Creek Floodplain Map	2020	Yes	1D	
Don River Floodplain Mapping Update – Phase 1	2020	Yes	1D	
Rouge River Floodplain Mapping Update – Phase 1	2020	Yes	1D	
Don River Floodplain Mapping Update – Phase 2	2020	Yes	1D	
Rouge River Floodplain Mapping Update – Phase 2	2020	Yes	1D	
Duffins Creek Floodplain Mapping Update	2020	Yes	1D	

Where can you find this information?

- TRCA Board Report Sep 25, 2020 Meeting Item 8.4 (<u>https://pub-</u> trca.escribemeetings.com/FileStream.ashx?DocumentId=6164)
- 2. Maps
 - a. On the GIS servers
 - b. On the Viewer

https://arcgis02.trca.local/engineering%20services/

https://arcgis02.trca.local/plandev/

- 3. Models & Associated Reports
 - a. Contact ES staff
 - b. Some reports can be found here:

https://trca.ca/conservation/flood-risk-management/modelingreferences-section/

Future Work

- 1. FPM Extension Updates in Peel (2020-2021)
 - 1. Etobicoke
 - 2. Humber
- 2. FPM Extension Updates in York (2021-2022)
 - 1. Humber
 - 2. Rouge

Acknowledgements

Development and Engineering Services staff

- Flood Risk Management Staff
- Water Resources Staff
- Development Planning and Permits
- Infrastructure Planning and Permits

GIS staff

NDMP Funding

- Federal and provincial governments
- Our municipal partners

"All models are wrong, some are useful" Quote by George Box (British Statistician)

wilfred.ho@trca.ca christina.bright@trca.ca mike.todd@trca.ca

www.trca.ca

Upcoming Lunch and Learns

Tuesday, November 17 11:30am-12:30pm

Working with Indigenous Communities

By Tony Morris (and Kathryn Brown) Tuesday, December 8 11:00am-12:00pm

Green Infrastructure Asset Management

By Michelle Sawka and Tracy Timmins Wednesday, December 16 11:30am-12:30pm

Terrestrial Environmental Monitoring and Evaluation

By Paul Prior and Gavin Miller

Past Recordings

Draft Web Application

Laura Del Giudice, Senior Manager, Watershed Planning & Reporting Kristina Dokoska, Project Coordinator, Ontario Climate Consortium

Introduction to the LID Treatment Train Tool

September 21, 2020

Thank you

For questions about the ECS Lunch and Learn Series, please contact:

Sharon Lam sharon.lam@trca.ca

