ECS Lunch and Learn

Supporting internal knowledge transfer within TRCA

March 24, 2021

TRCA's Natural Heritage System Update

<u>Presented by:</u> Namrata Shrestha, Senior Research Scientist Andrew Chin, Research Analyst

Ecosystem and Climate Science Watershed Planning and Ecosystem Science | Development and Engineering Services

24 Mar 2021

Outline

- 1. Background
- 2. Approach and Scope
- 3. Phase I to Phase III Details
- 4. Summary and Next Steps

BACKGROUND

What is a Natural Heritage System?

"a system made up of natural heritage features and areas and linkages intended to provide connectivity (at the regional or site level) and support natural processes which are necessary to maintain biological and geological diversity, natural functions, viable populations of indigenous species, and ecosystems.

These systems can include natural heritage features and areas, federal and provincial parks and conservation reserves, other natural heritage features, lands that have been restored or have the potential to be restored to a natural state, areas that support hydrologic functions, and working landscapes that enable ecological functions to continue."

Provincial Policy Statement (1994, 2020)

TRCA's Terrestrial Natural Heritage System (2007)

- Focused on protecting existing and restoring potential natural cover
- Aimed to increase terrestrial biodiversity (habitat and species)
- Management action focus on protection, enhancement, and restoration of natural areas
- Informed TRCA and municipal initiatives

Why an update to the TNHS?

- 1. To consolidate and account for various municipal natural heritage systems
- 2. To account for climate change impacts on natural systems
- 3. To utilise updated science and practice of natural systems planning (**urban**)
- 4. To utilise the expanded field data and analytical capacity of TRCA
- 5. To inform TRCA and municipal partners in various strategies and initiatives

Approach

Toronto and Region Conservation Authority

Urban Ecosystems

Natural CoverTotal Area:59006 haForest:34654 haWetland:3915 haSuccessional:5026 haMeadow:15237 haBeach/Bluff:174 ha

Natural area

Natural area + Urban canopy

- 1. How can natural & built areas complement each other to achieve NH objectives?
- 2. How can science inform policy and practice to make this happen?

Project Scope

Phase I	Phase II	Phase III	
TRCA Internal consultation	Terrestrial Ecosystem and Biodiversity	Integration for TRCA updated NHS	
Municipal / provincial NHS consolidation	Aquatic Ecosystem, Hydrological Linkages, and	Co-benefit mapping and local / watershed	
Climate Vulnerabilities & Habitat Connectivity	Biodiversity	applications	

igage municipal partners throughout the process in syr with watershed planning process

Phase I

Toronto and Region Conservation Authority

1. Municipal NHS Consolidation

 Consolidated municipal OP NHS data with the TNHS (2007) to identify synergies and discrepancies

- Identified climate vulnerable areas for terrestrial systems based on
 - Habitat patch quality
 - Climate sensitive vegetation
 - Wetland vulnerability
 - Soil drainage
 - Ground surface temperature

- Identified climate vulnerable areas for terrestrial systems based on
 - Habitat patch quality
 - Climate sensitive vegetation
 - Wetland vulnerability
 - Soil drainage
 - Ground surface temperature

- Identified climate vulnerable areas for terrestrial systems based on
 - Habitat patch quality
 - Climate sensitive vegetation
 - Wetland vulnerability
 - Soil drainage
 - Ground surface temperature

- Identified climate vulnerable areas for terrestrial systems based on
 - Habitat patch quality
 - Climate sensitive vegetation
 - Wetland vulnerability
 - Soil drainage
 - Ground surface temperature

- Identified climate vulnerable areas for terrestrial systems based on
 - Habitat patch quality
 - Climate sensitive vegetation
 - Wetland vulnerability
 - Soil drainage
 - Ground surface temperature

- Identified climate vulnerable areas for terrestrial systems based on
 - Habitat patch quality
 - Climate sensitive vegetation
 - Wetland vulnerability
 - Soil drainage
 - Ground surface temperature

3. Habitat Connectivity Priorities

- Identified regional connectivity priorities for climate adaptation and gene flow for biodiversity
- Identified local connectivity priorities for avoiding / mitigating road kills and supporting local populations of biodiversity

Crossings Guideline for Valley and Stream Corridors

September 2015

3. Habitat Connectivity Priorities

- Identified regional connectivity priorities for climate adaptation and gene flow for biodiversity
- Identified local connectivity priorities for avoiding / mitigating road kills and supporting local populations of biodiversity

Crossings Guideline for Valley and Stream Corridors

September 2015

Phase II

Toronto and Region Conservation Authority

4. Updated Science and Practice

Urban Ecology Framework

- Mapped out contribution of entire landscape to provide natural heritage functions
- Used data on urban living green infrastructure such as urban forest
- Identified potential "contributing areas" that recognizes built-up areas with higher contributions to natural heritage functions

Terrestrial Priorities

- Used TRCA inventory data on birds and amphibians and landscape variables to identify 9 Functional Trait Groups (FTG) of biodiversity for management.
- Identified habitat suitability for each group ranging from urban adapted to sensitive species across the landscape
- Large natural areas and high connectivity areas were the most important habitat attributes for high suitability
- Also, urban adapted group had medium level suitability in areas with good urban canopy such as in older residential neighbourhood (contributing areas)

Aquatic Priorities: Above Ground Influence

- Incorporated terrestrial influences on aquatic ecosystems through delineation of Reach Contributing Areas (RCAs)
- Identified 4 Functional Trait Groups (FTG) of fish based on their traits, RCA variables, and instream variables
- Identified habitat suitability of RCAs for their contribution to instream habitat of each FTG
- Forest cover in RCA and stream flow seemed to be the most important factors
- Greater forest cover in RCA regulates thermal regime thereby supporting high quality aquatic habitats

Aquatic Priorities: Below Ground Influence

- Ecologically Significant Groundwater Recharge Area (ESGRA)
- Areas that are ecologically important for replenishing groundwater systems to support aquatic system
- Critical for thermal preference of fish species especially with climate change

Phase III

Toronto and Region Conservation Authority

Integration for Updated NHS: Criteria List

Locked in Features & Areas (9)	Aquatic Functions (6)	Terrestrial Function (21)	Municipal NHS (1)
 Wetlands (TRCA 2020) Fish Habitat (Watercourses & CoS / some buffer) Woodlands (forests & successional) Valleylands (CoS – included above as well) Wildlife Habitat (Toronto ESA, Migratory bird areas) Habitat of ES&TS (Mostly included in above layers) ANSI (Earth and Life Sciences) NC in conservation areas (Included in above layers) 	 Habitat suitability (fish) Riparian natural cover ESGRA 	 Remaining Natural cover Vegetation communities (ELC alpha and beta) Species (Fauna/Flora alpha and beta) Habitat connectivity (birds and amphibians) Habitat suitability (birds and amphibians) 	 Consolidated Municipal NHS (local and regional)

Marxan Method

- Marxan is an optimization tool for reserve design based on specified criteria and targets for management (Ball et al. 2009)
- The algorithm aims to achieve targeted representation of all specified criteria for the smallest possible cost. While doing so it identifies the most optimal areas that tries to maximize all targets.
- The tool allows for multiple scenarios and combination of criteria to identify the strategic locations for TRCA's updated NHS
 - Level of representation of each criteria = 30%, 40%, and 50%
 - Scale of analysis = Regional and Watershed

Management Implications

- Total of 36% is target natural cover; additional 16% is target for contributing areas
- Prioritize protection for all existing natural cover (24%) including those that are outside of reg limit (8%);
- Prioritize restoration for the potential natural cover (12%); all are within reg limit so stronger business case;
- Prioritize various green infrastructure (GI) and low impact development (LID) measures for implementation in the contributing areas (16%); these areas are constrained by existing land use so action should be driven by target function

NHS Tiers	Percent of Jurisdiction (%) (Inside, Outside Reg Line)	Management Actions
Existing Natural Cover	23 (16, 8)	Protect + Enhance + Acquire
Potential Natural Cover	12 (12, 0)	Acquire + Restore + Protect
Contributing Areas (Unbuilt)	2 (1, 1)	GI & LID Implementation (function driven)
Contributing Areas (Built)	14 (5, 9)	GI & LID Implementation (function driven)
TRCA updated NHS	52 (34, 18)	

38

Summary

Toronto and Region Conservation Authority

Summary

- TRCA's updated NHS builds on the systems principals of TNHSS (2007)
- It adds new and updated science and information
 - Integrates terrestrial and aquatic ecosystems functions and needs
 - Accounts for municipal NHS, as supported by ecosystem features and functions
 - Accounts for the contribution of natural cover (existing and potential) and other parts of the landscape (contributing areas) for overall NHS health
- Provides high level targets at regional and watershed scale
- Provides scalable information for management actions and implementation
- Provides independent datasets for use in other TRCA operations

Next Steps

- Summary Report (April 2021)
- Director's approval and further direction; SLT (May 2021)
- NHS technical workshop with CAs and Municipal NHS staff (Q2 2021)
- Finalize TRCA's updated NHS (Q2 2021)
- Future Work:
 - Landscape Analysis Model assessment for habitat quality ranks (Mar 2021)
 - Co-benefit mapping at regional scale (Q2 2021)
 - Green infrastructure implementation best practices guide (Q3 2021)
 - Refinement at watershed scale and track changes Etobicoke (Q2 2021)
 - Refinement at site scale and track changes as opportunity arise (ongoing)

Special acknowledgement to the TRCA technical advisory committee and the technical team, without whom this work would not have been possible.

TRCA Technical Advisory Committee:	TRCA Technical Advisory Committee and Technical Team:
Noah Gaetz	Jonathan Ruppert
Brad Stephens	Parth Sheth
Mary-Ann Burns	Sue Hayes
Laura DelGiudice	Paul Prior
John Stille	Gavin Miller
Karen McDonald	Lyndsay Cartwright
	Tracy Timmins
	Andrew Ramesbottom
	Neil Taylor
	And numerous field staff who collected the data that were used here.

Project Contact Namrata Shrestha, Senior Research Scientist, Namrata.Shrestha@trca.ca Andrew Chin, Research Analyst, Andrew.chin@trca.ca

Ecosystem and Climate Science Watershed Planning and Ecosystem Science | Development and Engineering Services

Upcoming ECS Lunch and Learns!

Wednesday, April 14 11:00am-12:00pm

Thermal Imaging for Restoration and Conservation

By Jonas Hamberg

Wednesday, April 21 11:00am-12:00pm

Lake Ontario Fish and Aquatic Ecosystem Health

By Valerie Francella, Angela Wallace, and Jan Moryk Tuesday, April 27 11:00am-12:00pm

Lake Ontario Restoration Initiatives

By Andrew Ramesbottom, Colleen Gibson, John Stille, and Jennifer Smith

New Learning Management System!

Past Recordings

Thank you

For questions about the ECS Lunch and Learn Series, please contact:

Sharon Lam sharon.lam@trca.ca

