ECS Lunch and Learn

Supporting internal knowledge transfer within TRCA

February 10, 2021

The Meadoway

Research Overview

Presented by: TRCA

Project Objective

To revitalize a 200+ hectares underutilized hydro corridor across Scarborough to increase biodiversity, connect local communities to nature, and develop a successful pilot program that can be replicated across the country.

The Meadoway

The Meadoway Research – 5 Key Areas of Focus

2020

1) Biodiversity

- UoT Bee Inventory –Sisley Irwin
- Species Gantt Chart
- Terrestrial Monitoring Plots/Transects (Birds, Butterfly, Flora)
- 2) Climate Change
 - Soil organic matter
 - Plant biomass
- 3) Water Management
 - UoT Dr. Jennifer Drake and Ke Qin
 - Infiltration Tests
 - Soil Samples
 - Root Density Sampling
 - Literature Reviews
- 4) Meadow Restoration Techniques
 - Seeding Mix Trials
 - Seed Packing/Preparation Trials
- 5) Invasive Species Management
 - Glyphosate Degradation Curve
 - Mechanical Methods
 - Herbicide Alternatives
 - Milkweed Barrier for DSV

2021

- 1) Continue 2020 Research Initiatives
- 2) Key Performance Indicators
 - Creating qualitative and quantitative measurable matrix

Examples:

- Biodiversity Index
- Terrestrial Natural Heritage System Targets
- Surface temperature changes
- Resiliency for Climate Change
- Adding Natural Cover (ha)
- Improvements to Quality (ha)

University of Toronto Research

Bee Inventory

- MITACS student Sisley Irwin looked at pollinator and flower interactions
- 11 plots were surveyed, representing pre-restoration sites, newly planted sites, and sites 1-3 years post restoration
- Using a special bee vacuum, species were collected and released
- 878 plant-pollinator interactions were recorded in Sections 1-7
- Nectar samples were taken from several plant species to measure volume and sugar content
- Data analysis winter 2021

Biodiversity Species Gantt

Plants		May				June				July				
Species Name	Common Name	1	2	3	4	1	2	3	4	1	2	3	4	5
Fragaria virginiana	Wild Strawberry	F	F	F	F	F	F	S	S					
Antennaria plantaginifolia/neglecta	Field Pussytoes			F	F	S	S							
Alliaria petiolata	Garlic Mustard	F	F	F	F	F	F	S	S	S				
Vincetoxicum rossicum	DSV					F	F	F	F/S	F/S	F/S	F/S	F/S	
Cypripedium parviflorum	Yellow Lady's Slipper					F								
Aquilegia canadensis	Wild Columbine					F	F	F		S				
Zizia aurea	Golden Alexander					F	F							
Lupinus perennis	Wild Lupine					F	F			S				
Penstemon hirsutus	Hairy Beardtongue					F	F	F						
Geranium maculatum	Wild Geranium					F	F							
Anemone canadensis	Canada Anemone					F	F	F				S		
Sisyrinchium montanum	Blue-Eyed Grass					F	F	F		S	S	S		
Trifolium pratense	Red Clover				F	F	F	F	F	F	F			
Trifolium repens	White Clover					F	F	F	F	F	F			
Lotus corniculatus	Bird's-foot Trefoil					F	F	F	F	F	F	F		
Hieracium caespitosum	Yellow Hawkweed						F	F						
Asclepias syriaca	Common Milkweed								F	F	F	F/S	F/S	F/S

Birds, bees, butterflies and mammals were also monitored with the Gantt

University of Toronto Research

Dr. Jennifer Drake and Ke Qin research on soils and hydrology:

- Infiltration rates (54 samples done)
- Soil Characteristics (282 soil samples collected)
- Soil organic matter
- Moisture holding
- Moisture release curve
- Nutrient holding capacity / capture
- Groundwater recharge and discharge rates
- DNA testing for soil microorganisms

Seasonal Seeding Plots

be used for all meadow seeded areas lone by seed drill on the west half of section 1.2

Seasonal Seeding Plots - Results

- 33 1x1m plots
- Butterfly test plots
- ↑ success winter
- Spraying effective if spring
- No diff b/w hand or seed drill

Seasonal Seeding Plots - Results

33 1x1m plots

Butterfly test plots

- Spraying effective if spring
- No diff b/w hand or seed drill

Dry mix test plots

- Spraying ↑ success but was most effective in fall and spring compared to winter
- No effect of season on success

TRCA Terrestrial Monitoring

- 33 Monitoring plots
- 8 Bird stations and 10 Butterfly transects

TRCA Terrestrial Monitoring - Results

- Grasses taking off in some areas
- Increasing cover of seeded species
- New species from seed mix discovered
- Nectaring opportunities for butterflies
- Foraging opportunities for aerial insectivorous birds

Seed Packing/Preparation Trials

Final prep - Harrow/Packer/Combination

- 2019 found harrows after broadcast seeding resulted in best germination of cover crop
- However, this results in soft soil and lots of air spaces
- Tested using a packer compared to a harrow or combination for final preparation before seed drilling:

Seed Packing/Preparation Trials

Moving Forward: Look into equipment that can do both faster

Invasive Management – Glyphosate Degradation

- Community garden resident concern
- No degradation curves found in the literature

Glyphosate Degradation Curve from Section 1.2 East

- More detailed testing inconclusive due to spike in July
- Repeating this year with more samples

Invasive Management – Mechanical Methods

Repeated tilling for site preparation (mow, till, cover crop)

- 25ha reduction in 2 X blanket applications of Glyphosate
- Section 5 planned for NO blanket spray

Targeted thistle trimming

- 35ha reduction in spot spraying
- Most managed invasive
- Looking for more research on thistle management

Digging/pulling of Knapweed

2ha reduction in spot spraying

Invasive Management

Reducing the use of Glyphosate - Alternative herbicide treatments

- DSV removal by comparing 4 alternative chemicals with glyphosate
- Canada Thistle treatment with Finalsan
- Knapweed with 4 methods including physical and chemical
- Blanket spray alternatives
- Steam applications
- Milkweed Barriers

B-plots

3

Invasive Management

- Alternative Herbicides on DSV:
- Red Glyphosate (5% solution)
- Green Weed B Gone (Chelated Iron)
- Yellow Mungers Agricultural 20% Vinegar
- Orange Finalsan (Ammonium soap of fatty acid
- Brown Borax solution (1 oz Borax/L Water)

A-plots

3

2

East <

Invasive Management

Results 2 months post application

Invasive Management

Results: plot B3 - Finalsan – Ammonium Soap of Fatty Acids

Invasive Management

Finalsan effects on Canada Thistle:

- Limited success stopped flowering
- More research needed

Knapweed trial:

- Pulling Reasonably effective, reduced flowering
- Cutting Grows back within a month and will continue to flower
- Glyphosate Effective but kills everything around it
- Finalsan Single application had limited effect on stopping flowering

Invasive Management

Alternative Blanket spray trial - Finalsan vs Agricultural Vinegar to kill all turf and weeds before tilling

- Agricultural Vinegar is more effective at killing turf
- Both grow back in short period of time
- Multiple tilling passes appears as effective without pre-spray.

One Week

Two Months later

Invasive Management

Hot Steam Treatment:

• Needs multiple applications

Milkweed as a barrier:

 Research showed milkweed may reduce the growth of DSV

Future Research Planning

2021

- 1) Continue 2020 Research Initiatives
- 2) Key Performance Indicators-Group Discussion
 - Creating qualitative and quantitative measurable matrix

Examples:

- Biodiversity Index
- Terrestrial Natural Heritage System Targets
- Surface temperature changes
- Resiliency for Climate Change
- Adding Natural Cover (ha)
- Improvements to Quality (ha)

Thank You

Looking to find out more information? Feel free to reach out.

Lyndsay Cartwright Data Analyst, Ecosystem and Climate Science <u>lyndsay.cartwright@trca.ca</u>

Chris Cormack Site Supervisor, Integrated Restoration <u>chris.cormack@trca.ca</u>

Paul Morris Project Manager, Integrated Restoration Paul.morris@trca.ca

Katie Turnbull Senior Project Manager, Integrated Restoration <u>Katie.Turnbull@trca.ca</u>

Upcoming ECS Lunch and Learns!

Wednesday, March 24 11:00am-12:00pm

Natural Heritage System (NHS) Update

By Namrata Shrestha

Wednesday, April 14 11:00am-12:00pm

Thermal Imaging for Restoration and Conservation

By Jonas Hamberg

Past Recordings

Thank you

For questions about the ECS Lunch and Learn Series, please contact:

Sharon Lam sharon.lam@trca.ca

