ECS Lunch and Learn

Supporting internal knowledge transfer within TRCA

December 8, 2020

Green Infrastructure in Asset Management Planning

Presented by: Michelle Sawka, Senior Research Scientist Tracy Timmins, Research Analyst

Ecosystem and Climate Science

December 8, 2020

Agenda

- 1. Introduction/Background (15 minutes)
 - Green Infrastructure
 - Asset Management Planning
- 2. Green Infrastructure Asset Management Planning (5 minutes)
- 3. State of Infrastructure Inventory (10 minutes)
- 4. State of Infrastructure Valuation (10 minutes)
- 5. What's Next (5 minutes)

Asset Management Planning in Ontario

- Fairly advanced compared to other jurisdictions globally
- Required by provincial regulation
- Our Jurisdiction includes global leaders in integrating green infrastructure into asset management planning:
 - York Region
 - Richmond Hill
 - Ajax

Our Role

Support municipalities with integrating green infrastructure into asset management plans

Advocacy through the Green Infrastructure Ontario Coalition (GIO)

Share our knowledge and expertise

Green Infrastructure

Ontario Provincial Policy Statement

Natural and human-made elements that provide ecological and hydrological benefits. Green infrastructure can include components such as natural heritage features and systems, parklands, storm water management systems, urban forests, permeable surfaces, and green roofs.

Municipal Green Infrastructure Assets

		Green Infrastructure Focus Areas					
		Urban Forest	Storm water	Parks & open space	Agriculture & urban agriculture	Green roofs & walls	
	Natural	Forest/Woodlot	Natural wetland	Meadow	Agricultural land		
		Park tree	Natural watercourse	Ravines/valley land	Soil	n/a	
		Street tree	Lake/pond	Natural open space			
Category		Soil	Soil	Soil			
		Engineered soil	Constructed wetland	Trails	Community garden	Green roof garden	
ate		Soil cell	Bioswale	Park land		Green roof	
Asset C			Dry/wet pond			Green wall	
			Rain Garden				
	Engineered	n/a	Permeable paving	Sports field			
			Infiltration trenches/chambers	Playground	n/a	n/a	
			Rain barrels				

Green Infrastructure Services

Water Quantity and Quality Improvements

Urban Heat

Reduce Urban Heat Islands & Direct Shading

Climate Change Adaptation & Mitigation

Benefits of Incorporating Green Infrastructure into Asset Mgmt Planning

Asset Management Planning in Ontario

Asset Management Planning for Municipal Infrastructure Regulation, O. Reg. 588/17 (January 2018)

5. (1) Every municipality shall prepare an asset management plan in respect of its core municipal infrastructure assets by July 1, 2021, and in respect of **all of its other municipal infrastructure assets by July 1, 2023.**

Definitions

"municipal infrastructure asset" means an infrastructure asset, **including a green infrastructure asset**, directly owned by a municipality or included on the consolidated financial statements of a municipality, but does not include an infrastructure asset that is managed by a joint municipal water board

"green infrastructure asset" means an infrastructure asset consisting of natural or human-made elements that provide ecological and hydrological functions and processes and includes natural heritage features and systems, parklands, stormwater management systems, street trees, urban forests, natural channels, permeable surfaces and green roofs

Asset Management Planning

Asset management planning aims to

manage municipal assets over their life cyle to ensure sustainable service delivery

manage risks to an acceptable level

keep costs to a minimum

The Approach

Make regular investments into assets to reduce costs and ensure more reliable services

From Town of Richmond Hill 2016 Asset Management Plan

Four stages of asset management planning

1) State of infrastructure

• Asset register & inventory

2) Levels of service

Metrics on current and proposed services

3) Life cycle management plan

• Management options, risks, costs

4) Financial strategy

• Costs of plan, funds available, shortfalls

Differences between Traditional Assets & Green Infrastructure Assets

Traditional Assets

- 1. Must be constructed or bought
- 2. End of life/Must be replaced
- 3. Provides one or two services
- 4. Expected service levels achieved after construction/installation
- 5. Accounting standards for valuation

Green Infrastructure Assets (some)

- 1. Naturally forming
- 2. No end of life
- 3. Many services provided
- 4. Desired service capacity can take months to decades to achieve
- 5. No accounting standards for valuation

Natural Assets: Formed Naturally and Have No End of Life

Existing rivers, forests, lakes, wetlands, etc.

- Non-typical lifecycle: No historical cost and no plans to replace
- But these assets can become degraded and sometimes are lost
- Asset replacement = Ecosystem restoration

Living Green Infrastructure Provides Many Services

 Need to identify all the services that the assets are being managed for and which are valued by the public

 Restoration and management actions must replace or maintain these services (as much as possible)

Delay in Service Provision / Services Increase with Time

- Slow growing assets like trees and forests take years to reach desired service levels.
- Need to consider delay in service provision in management plan
- Consider increasing service levels in asset valuation

No Generally Accepted Accounting Principles

 There are no accounting standards for valuing green infrastructure assets

• This can increase resistance to including green infrastructure into asset management planning

Four stages of asset management planning

1) State of infrastructure

• Asset register & inventory

2) Levels of service

Metrics on current and proposed services

3) Life cycle management plan

• Management options, risks, costs

4) Financial strategy

• Costs of plan, funds available, shortfalls

State of Infrastructure Report 2013

Stage 1: State of Infrastructure

Where municipalities/organizations answer the following questions:

- What assets are they responsible for?
- What are they worth?
- How old are they?
- What is their condition?

The foundation for decisions and recommendations within the asset management planning process

Asset Management Classes/Categories

Town of Ajax

- Transportation
- Stormwater
 Management
- Outdoor Active Recreation
- Forestry
- Facilities
- Fleet
- Information
 Technology

City of London

- Water
- Wastewater Sanitary
- Wastewater –
- Stormwater
- Transportation
- Parking
- Solid Waste
- Parks
- Recreation
- Urban Forestry
- Fire
- Long Term Care
- Corporate & Cultural Facilities
- Fleet
- Information Technology
- Land
- Corporate Security

York Region

- Housing Services
- Paramedic Services
- Seniors Services
- Information
 Technology
- Property Services
- Energy Management
- Forestry
- Waste Management
- Wastewater
- Water
- Roads
- Transit
- Police Services

Bruce County

- Road Network
- Bridges & Culverts
- Social Housing
- Buildings
- Land Improvements
- Machinery & Vehicles
- Equipment
- Technology &
 Communication
- Trail Programs

What assets does the municipality own or manage?

Example – Types & Quantity of GI Assets

Table 6.1 Asset Inventory and Valuation (Wastewater – Stormwater Services)					
Asset Type	Asset	Inventory	Unit		
Stormwater	Storm Sewers (< 450 mm diameter)	494	km		
Conveyance	Storm Sewers (450 mm >= to < 1,500 mm diameter)		km		
System	Storm Sewers (=> 1,500 mm diameter)	117	km		
	Open Conveyance (Municipal Drains, Drains, Channels, Dyke)	89	km		
Stormwater	Storm Water Management Facilities (Wet Facility, Dry Facility, Dissipation Pools, Online Flood & Erosion Control Facilities)		Ea.		
Management	SWM Green Infrastructure (Bioretention cells with or without underdrain, Drywells)	63	Ea.		
	Minor Treatment (Oil/Grit Separators)	37	Ea.		

City of London Corporate AMP 2019

Example – Types & Quantity of Assets

Table 18: Env	vironmental Assets Inve	entory and Current Va	lue	
Asset Class	Replacement Cost (2014 dollars)	Quantity	Data Confidence	
Street Trees	\$13.4 M	43,217 trees	Intermediate	
Natural Areas - Forest	\$74.2 M	696.2 hectares	Intermediate	

Figure 38: Vegetation Communities in Richmond Hill's Natural Areas

Richmond Hill AMP 2016

Example – City of Newcastle, Australia

Service Output	Asset Stock	
Aquatic Centres	5 Aquatic Centres 2 Ocean Bath Facilities	
Arts and Cultural Facilities	1 Museum Facility including collections 1 Art Gallery Facility including collections 1 City Hall Facility 1 Civic Theatre Facility	1 Fort Exhibition Facility 1 Historic Fort 147 Public Art, Fountains and Monuments
Bushland, Watercourses and Public Trees	88 Bushland Parcels totaling 4.8Mill sqm 97,428 Street and Park Trees 607 Creek Reaches totaling 79km	42 Inland Clifflines totaling 20,444 sqm 45,269m of tracks and trails 106 Nest Boxes
Car Parking	1 Parking Station	108 Off Street Carparks
Caravan Park	1 Holiday Park	
Cemeteries	3 Cemeteries	
Child Care	11 Child Care Centres	
Coastal, Estuary and Wetland	12 Beaches (6 Main) 4.5 km Dunes 3 Lifeguard Facilities 3 Boat ramps	63 Wetlands covering 187ha 21 Coastal clifflines totalling 3.6km 29 sea and river walls totalling 1.1km 9 Rock platforms totalling 3.3km
Community Buildings	3 Senior Citizen Facilities 9 Community Centres 7 Community Halls	8 Surf Clubs 1 Neighbourhood Centre 7 Scout/Guide Halls
Libraries	9 Library Facilities including collections	
Parks and Recreational Facilities	54 Sporting Amenities Facilities 116 Playgrounds 15 Grandstands 18 Kiosks 15 Animal Enclosures 115 Shade and Shelter Structures	8 Skate facilities 65 Support Buildings e.g. clubhouses and sheds Support structures e.g. fencing, flagpoles, scoreboards, lighting
Public Amenity	39 Public Toilet Facilities	

How old are assets?

Age-Related Attributes

Age-related attributes can act as a surrogate for condition & indicate when rehabilitation or replacement may be required.

Attributes:

- Age
- Expected useful life
- Remaining useful life

For each asset category report:

- average age or age as a proportion of expected useful life
- proportion of assets within each age class

An Example of Asset Useful Life

Asset Group	Asset Type	Asset Sub-Type	Asset Useful Life			
URBAN FOREST						
	Street Trees	Urban Trees	35 years			
		Suburban Trees	44 years			
		Rural Trees	53 years			
	Plants	Shrubs	Not applicable – entire bed replaced			
Biological Assets		Perennials	when street trees are replaced (individual failed plants are considered a maintenance cost)			
	Growing Medium	Soil Cells	50 years (when sidewalk is replaced)			
		Boulevard Soil Trench	Not applicable – made up of native soils			
		Engineered Growing Medium	35 years			
		Native Soils	Not applicable			

York Region's GI AMP 2017

Example of Average Age & Average Remaining Life

City of London Corporate AMP 2019

What is the condition of assets?

Condition Attributes

- Attributes which measure physical condition
- Report:

average condition and condition profile for asset group or category

 Develop a condition scoring system for use among all asset types

Years

Attributes

- Condition Rating
- Specific condition
 attributes
- Date of assessment
- Method of assessment

Condition Criteria for Street Trees

Grade		1/A	2/B	3/C	4 / D	5/E
Condition		Very Good	Good	Fair	Poor	Very Poor
LoS		Conforming Level	Conforming Level	Observation Level	Intervention Level	Non- Conforming
	Status	Thriving	Satisfactory	Potential Trouble	Declining	End of Life
STREET TREES	Health	Perfect specimen with excellent form and vigor, well- balanced crown. Likely to exceed life expectancy.	Imperfect canopy density in 10% of tree, Less than half normal growth rate; pest damage controllable. Typical life expectancy.	Crown decline and dieback up to 30% of the canopy. Obvious signs of pest problems. Below average life expectancy.	Significant dieback affecting larger branches. Stunting obvious with obvious pest problems. Life expectancy is low.	Will likely die within 5 years.
	Management	Implement routine maintenance	Implement routine maintenance	Requires corrective pruning	Requires major corrective pruning, or replacement	Will require replacement or removal

York Region GI AMP 2017

Example of Condition Profile for Stormwater Assets

Figure 6.3 Asset Condition Detail (Wastewater – Stormwater Services)

City of London Corporate AMP 2019

Integrating Green Infrastructure Assets into Mississauga's Stormwater Asset Management Plan

In 2019, the City of Mississauga approached TRCA to examine how GI assets can be incorporated into the City's Stormwater Asset Management Plan

- Project Lead: Kristina Dokoska
- GI assets examined for this project include:
 - Watercourses
 - Stormwater Management Ponds
 - Low-Impact Development Features

Phase 1: Introduction and State of Infrastructure

 Best practice review & provide guidance on defining 'green and natural' infrastructure

2. Best practice review & develop a framework for green infrastructure asset inventory

3. Build the inventory for pilot sites
State of Infrastructure Report: What is the value of assets?

How Asset Value is Used

- Informs long-term asset management and financial management decisions
- Internal and external reporting
- Allows for **comparison** between service areas and asset categories

Why green infrastructure assets need to use the same method

REPLACEMENT VALUE (\$MILLIONS)

General Valuation Approaches

Historical cost The original cost to purchase or construct the asset

Current cost The cost of the asset in today's dollars

Asset Management Planning Valuation

Current Replacement Cost

Costs of replacing an existing asset with a new asset that will provide the **current required level of service** in the same operating environment. It should also consider changes in technology and construction methods and materials and use the least cost option.

PSAB 3150 vs. Asset Management Plan Valuation

PSAB 3150

Public Sector Accounting Board Handbook, Section 3150 – Tangible Capital Assets (TCAs)

- Valuation of assets for financial statements
- TCAs = historical cost of asset minus accumulated depreciation/amortization
- Restricts the inclusion of natural assets as TCAs

Asset Value for Asset Management Planning

- Current replacement cost, used for financial planning
- Should include any asset with a role in service delivery and requires deliberate management, whether they are TCAs under PSAB 3150 or not.

Asset Management Plan Valuation vs. Ecosystem Service Valuation

Ecosystem
services
valuation

- Economic Valuation
- Useful for making a business case for protecting and managing green infrastructure
- Does not align with the valuation method used for traditional assets

Asset value for asset management planning

- Current replacement cost
- Asset focused
- Consistent across all assets in an asset management plan

Applying the Replacement Cost Method to Green Infrastructure

- Use a benchmark cost (\$/unit)
- Total quantity of asset: area, length, number

Replacement cost = Benchmark cost x Quantity

General replacement cost approach

- Engineered assets: Construction costs
- Natural assets: Restoration costs

Replacement Cost of Trees (street and park)

Step 1) Decide on an approach

- 1 tree of any size is replaced by 1 small tree, OR
- Account for the size of the tree

Step 2) Set a benchmark cost

Step 3) Multiply benchmark cost by the number of trees

Option 1: 1 Tree is Replaced by 1 Caliper-Sized Tree

- Benchmark cost: \$ / tree
- All trees effectively have the same value, irrespective of their size.
- Basic replacement cost can be used to calculate costs of lifecycle management plan and in financial planning

Option 2: Larger Trees have Greater Replacement Cost

• Larger trees provide exponentially more services than smaller trees.

• The services they provide are not matched by replacement with a single young tree

Basic principle: replacement cost of 1 large tree = replacement cost of several caliper-sized trees

One Large trees; multiple smaller trees

Examples of Street Tree Valuations

AMP	Asset	Method details	# Trees	Average Cost / Tree	Asset value
Richmond Hill, ON	Street trees	1:1 replacement cost	43,217	\$310	\$13.4 million
London, ON	Street trees and manicured park trees	Replace tree with multiple trees to achieve equivalent <i>trunk diameter</i>	171,874	\$1,867	\$321 million
Ajax, ON	Boulevard trees	Value is based on the <i>trunk</i> diameter	39,000	\$1,445	\$56.4 million

Other Green Infrastructure Benchmark Costs

Most Green Infrastructure Assets: Purchase or construction costs

Some Natural Assets (e.g. forests, wetlands): Restoration costs

Final Points

- Value calculation and condition assessment methods need to be feasible, replicable, and establish a process for regular updates
- New or better information can emerge, this is okay and to be expected
- Be sure to document your method and any assumptions

Conclusions

- Green infrastructure assets need to be included in municipal asset management plans by July 1, 2023 (O. Reg. 588/17)
- Assets do NOT need to be Tangible Capital Assets (TCAs) to be included
 in asset management plans
- Asset valuation should be calculated using current replacement cost
- There are differences between green and traditional infrastructure, but there are strategies for addressing those differences.
- All the data isn't required before you can start to integrate green infrastructure assets into asset management plans.

Questions

Last ECS Lunch and Learn of 2020!

Wednesday, December 16 11:30am-12:30pm

Terrestrial Environmental Monitoring and Evaluation

> By Paul Prior and Gavin Miller

More sessions planned for 2021!

Past Recordings

Thank you

For questions about the ECS Lunch and Learn Series, please contact:

Sharon Lam sharon.lam@trca.ca

