

April 14, 2021

Jonas Hamberg

Ser.E.

Thermal imaging for ecosystem conservation and restoration

Jonas Hamberg

Mitacs Postdoctoral Fellow TRCA (ECS) & University of Toronto

Advisors: Jonathan Ruppert & Patrick James (UofT)

Credit: NASA/JPI

Presentation outline

- Who is this guy?
- What is thermal imaging?
- How does thermal imaging fit into conservation and restoration management?
- Example 1: Landsat restoration temperature over time
- Example 2: Drone thermal imaging
- Example 3: TRCA site temperatures over time of day
- Example 4: Rouge Valley mini-study
- What's next?

Jonas Hamberg

- Swede (can pronounce all IKEA furniture, but messes up J and Y sounds)
- M.Sc. from SUNY-ESF in Upstate New York, US
- PhD in Social and Ecological Sustainability (Restoration Ecology) from University of Waterloo
- 2 year Mitacs post-doc with University of Toronto and TRCA (ECS)

What is thermal imaging?

You <u>were</u> here

Google imagery – multiple sources ~2019-2021

You were just as much here

ECOSTRESS imagery

18th June 2020 15:34 pm

...and here

ECOSTRESS imagery

25th September 2020 17:59 pm

15.6	5
19.5	5
23.4	1
27.3	3
31.2	2

How is it used?

- Thermal camera (or imager, bolometer, thermographer etc.)
- Handheld, airplane, <u>drone (RPAS)</u>, <u>satellite</u>, <u>space station</u>
- Military, search and rescue, inspection, agriculture and ecology (?)
- Ecology/Conservation: Mostly used to track larger warm-blooded animals and for urban heat island effects
- Cutting-edge: thermal imaging of ecosystem stress (e.g. disease) and energy utilization

Energy use: Transpiration, photosynthesis, respiration, physical heat capacity

What we (academics and practitioners) are trying to figure out

- Is there a thermal (temperature) effect, how big is the effect, how easy/useful is it to locate the effect of:
 - Differences in plant biomass
 - Differences in plant biodiversity
 - Evapotranspiration
 - Drought stress
 - Disease stress
 - Patch size of vegetation
 - Etc.

Where could thermal imaging be of use to TRCA?

on temperature to funders & public

Satellites & Space Station

- Free and publically available
- Large extent
- Historical global data back to 1984
- Low resolution (60-120 m)
- Clouds are a real issue (

Drone (RPAS - Remotely Piloted Aircraft System)

- High resolution (centimeters)
- You decide when to fly
- Less error due to atmospheric conditions
- Becoming cheaper
- Requires training, certification, approval

Example 1: Agriculture to Oak-woodland restoration with Landsat satellites

Photo-credit: Mary Gartshore

May 2006

July 2018

Image processing

Normalize against paired mature forest area

Mean temperature decrease -1.5 p.p. per year. Equals approximately -4.5 °C in 12 years on a summer day

Comparing temperature to biodiversity and biomass

137 2x2m plotsIn three fieldssurveyed for all plantsby professionals 2007-2017

Three areas (yellow) were unseeded controls

3 paired areas were compared

When controlling for biomass, total plant cover and canopy cover – Each new species decreases temperature by about 0.5 °C

Native species may decrease temperature more than exotic ones*

Why would more, and more native species matter to temperature?

Ecosystem B

Same biomass as A, but three native species:

- Adapted to close and open to preserve water and keep cool
- Mycorrhizae bonds help with nitrogen uptake for more chlorophyll production

thermal monitoring and evaluation: Applications and next steps

Relative thermal recovery trajectory

Years following restoration

Summer day-time temperature change 2014-2018

Mapping surface temperature change over

time

A resolve for a solution to rectify resolution

8x8 centimeter Drone camera pixel

Example 2: Ag. reforestation and gravel pit restoration incl. topsoil transfer imaged with a drone (RPAS)

Methods: Implementation

875 tons of topsoil, small trees and organics moved in fall 2017

- Excavators
- Trucks
- Skid-steers
- Tractors

Study sites

2020

Spring 2019 (UAV) – Reforestation sites

Gravel pit site plot example

Plant species diversity and composition

- ~310 sampling frames, in spring, summer and fall 2019
- 162 total species, 50 NF species
- 44569 observations (89% identified to species)
- Tree growth and mortality measured.

				Native		
		# plots/sub-	Species	forest	Post-hoc	
Site	Plot-type	plots/frames	richness	sp. rich.	grouping	
S. D. Forest	Passive Control	5/1/2	17.6	13.8	А	
Gravel pit	Topsoil Recipient	5/4/2	31.8	11.2	А, В	
P. Forest	Lift-and-drop	5/3/2	11.5	9.6	A, B, C	
P. Forest	Passive control	5/1/2	11.1	8.8	A, B, C, D	
N. D. Forest	Passive Control	5/1/2	10.6	8.6	A, B, C, D	
RF 2016	Topsoil Recipient	5/4/2	25.3	8.1	B, C, D	
RF 2015	Topsoil Recipient	5/4/2	25.8	6.7	C, D	
Gravel pit	Passive Control	5/1/2	14.7	3.8	D, E	
RF 2015	Passive control	5/1/2	21.3	1.9	E	
RF 2016	Passive control	5/1/2	18.4	1.8	E	
RF 2015	Mow-and-spray	5/4/2	18.7	1.8	Е	

Two years after soil transfer:

- 1. Topsoil transfer had increased native forest plant species diversity significantly
- 2. Plant species composition of recipient plots closer to donor forest

^

^

^

^

^

°C

m

°C

°C

%

°C

^

°C

°C

~

₫ ^

P177% + C+ I + O+ O+ ≠ LI + C+ 4+ 5+ ₩

Spring 2018

Drone thermal imaging methods

- 9 days of thermal imaging with UAV in 2019
- Mid and late season July and September
- 8 flights per day at 12, 2, 4 and 8 pm
- 1080 thermal images
- Comparison 1: Between treatments at same site at same hour through ANOVA
- Comparison 2: Between normalized temperature and vegetation attributes using Spearman rank correlation analysis

Temperature over time-of-day results

Gravel pit – in July 2019

Temperature and vegetation attributes

The only attribute that is sig. correlated with lower temperatures at all sites is native forest plant species richness

	Temp. norm.	Tree diameter	Tree height	Tree gen. rich.	Sp. diversity	All Sp. rich.	NF. sp. rich	_	
% ground cove <mark>r</mark>	-0.02	0.05	-0.08	-0.05	0.23	0.31	0.34*		
NF sp. rich	-0.37*	0.21	0.01	0.04	0.81***	0.84***		-	
All sp. rich.	-0.22	0.17	-0.02	0.09	0.92***				
Sp. diversity	-0.15	0.03	-0.16	-0.06					
Tree gen. rich.	-0.14	0.48**	0.52**	р					
Tree height	-0.57***	-0.93***		Reforestation 201					
Tree diameter	-0.57***		-					-	

Reforestation 2016

		Tem nom	ıp. m.	Tree diameter	Tree height	Tree gen. rich.	All sp. diversity	All sp. rich.	NF. sp. rich
%	ground cover	-0.63	3**	-0.22	-0.27	0.23	0.27	0.3	0.46*
NF sp. rich0		-0.64	! **	-0.13	-0.16	0.39	0.34	0.76**	
Alls	All sp. rich0.58*		8**	-0.21	-0.20	0.23	0.47*		
Sp. diversity		-0.3	39	-0.22	-0.19	-0.01			
Tree gen. rich.		-0.3	31	0.27	0.06				
Tree height		0.1	9	0.88***	÷				
Tree d	0.0	2							
Temp.		p.	S	Sp.	All. sp.	NF. sp	p.		
	nom	rm. dive		ersity	rich.	rich			
% ground cover	-0.6*	**	0.28		0.37	0.79**	*		
NF sp. rich.	-0.47	7* 0.5 29 0.92		57**	0.70***				
Sp. rich.	-0.2			2***	Gr	ravel	pit		
Sp. diversity	-0.2	8							

Example 3: Temperature change over time-of-day with land cover imaged with ECOSTRESS

Credit:

NASA/JPL

崖

Methods

- Joint project with NASA-JPL, TRCA and UofT
- Sites:
 - NCC Norfolk County (same as example 1)
 - TRCA Albion Hills/Caledon
- Diurnal temperature change
- Four site types:
 - Pre-restoration: Agriculture
 - Reforestation
 - Post-restoration: Mature forest
 - Alternative land cover: Sub/Ex-urban residential
- June September 2020
- NCC: 19 images, TRCA: 15 images

 $0.067\ ^{\rm o}{\rm C}$ decrease by year since restoration

Example 4: Rouge Valley mini-study

Rouge valley surface temperature change -1985 to 2019

2-year post-doc with TRCA and U of T What's next?

1/1

Potential projects with TRCA & UofT

- Thermal signature of terrestrial landscapes (e.g. conifer vs. deciduous)
- The effect of tree disease on temperature due to evapotranspiration stress
- Thermal signature of native vs. invasive species (e.g. dog-strangling vine, phragmites)
- The thermal edge effect of restoration (e.g. added benefits of projects like The Meadoway and ravine/riparian restoration)
- Will depend on site access, feasibility, equipment, scientific interest and TRCA interest

Hot days ahead

- S. Ontario is predicted to have an increase of airtemperature of **0.6 degrees** by 2030 compared to today
- This results in an extra **week** of 30+ degree days by 2030
- The heat-wave in 2018 killed over 70 people in Montreal
- Heat stresses, kills and displaces both wild animals and pets
- Heat helps spread ticks with **Lyme-disease**, invasive **carp** and mosquitos with **West-Nile virus**

But thermal imaging can show, evaluate and monitor GTA's natural cooling centers!

PLANNER: Locate 'heat-deserts' and hot watersheds for restoration planning

MANAGER: Monitor restoration success and biodiversity based on temperature

GRANT-WRITER: Show funders how your restoration decreases temperatures

PUBLIC: Are you in a 'heat-desert'? How far does someone have to walk to get to a cool greenspace on a 30°C day?

Advocate for and plant more native and diverse greenery. Protect parks and street-trees as 'cool islands.

Thanks! Questions?

jonas.hamberg@trca.ca

TRCA Teams chat

Upcoming ECS Lunch and Learns!

Wednesday, April 21 11:00am-12:00pm

Lake Ontario Fish and Aquatic Ecosystem Health

By Valerie Francella, Angela Wallace, and Jan Moryk Tuesday, April 27 11:00am-12:00pm

Lake Ontario Restoration Initiatives

By Andrew Ramesbottom, Colleen Gibson, John Stille, and Jennifer Smith Thursday, May 16 1:00-2:00pm Intro to eDNA: Applications, Advantages, and Implications

By Precision Biomonitoring

New Learning Management System!

Past Recordings

Thank you

For questions about the ECS Lunch and Learn Series, please contact:

Sharon Lam sharon.lam@trca.ca

