ECS Lunch and Learn

Supporting internal knowledge transfer within TRCA

November 5, 2020

Introduction to the LID Treatment Train Tool

Presented by – Steve Auger, Sahlla Abbasi and Yuestas David

STEP Water is a partnership between:

Credit Valley Conservation inspired by nature

November 5, 2020

History

Background study - Remedial Actional Plan (RAP) project funding - 2015

- V1 Ph1 October 2015 June 2016 Beta development
- V1 Ph2 Jan 2017 April 2018 Beta Dev Vs 1.0 release

V2 Ph1 – August 2018 – Feb 2019

• Wiki integration (LID Planning and Design Guide)

V2 Ph2 – October 2019 – December 2020

- Costing integration
- Trees Integration
- Better alignment to Ontario Stormwater Management and LID Guidelines

Stormwater Help Desk – Nov 2019 - present

Purpose: LSPOP a key driver

LSPOP – Lake Simcoe Phosphorous Offsetting Program

 "LSPOP requires that all new development must control 100% of the phosphorus from leaving their property. This is referred to as the Zero Export Target, a key component of the LSPOP that ensures new development or redevelopment activities do not continue to contribute to phosphorus loading to Lake Simcoe" (Phosphorus Offsetting Policy, September 2017 (Updated May 2019)

Purpose: Calculate Pollutant Load

Pollutant Wash-off Concentration (mg/L) * Runoff Volume (L) = Pollutant Load (kg)

Purpose: Calculate Pollutant Load Reduction

Green Infrastructure (GI) –consists of natural and/or human-made elements that are designed to mimic natural environmental functions and processes.

Pollutant Wash-off Concentration (mg/L) * Runoff Volume (L) = Pollutant Load (kg)

Purpose: Calculate Pollutant Load Reduction

Filtration (Removal Efficiencies)					·		influent (mg/L) - effluent (mg/L) - 100%		
				6 removal (emciency =	i	influent (mg/L)		
LID	TSS Removal Efficiency %	TP Removal Efficiency %	Icon	Storage	TSS Removal Efficiency %	TP Removal Efficiency %	lcon		
Bioretention	75	25		Constructed Wetland	80	60			
Green Roof	0	-45	44	Wet Retention Ponds	80	60		Ectablished base	
Infiltration /	75	60	<u>***</u>	Dry Detention Ponds	60	20		measurements	
Exfiltration Systems	73			Junction	TSS Removal Efficiency %	TP Removal Efficiency %	Icon]	
Permeable Pavement	75	60	.	Specializaed Phosphorus Media Filter	75	70		1	
Vegetated Filter Strips / Buffer Strips	30	20		Sand or Media Filter	75	40			
Enhanced Swale	40	25	144	Oil Grit Separator	50	0			

d on field

Purpose: Calculate Pollutant Load Reduction and ...

Purpose: Fulfilled using existing models?

• EPA-SWMM (released 1971)

🧾 stormwater.rpt - Notepad

File	Edit	Format	View	Help		
I	nfilt	ration	Meth	od	 CURVE_NUMBER	2
F	low R	outing	Meth	od	 DYNWAVE	
S	tarti	ng Date	e		 JAN-01-2015	00:00:00
E	nding	Date			 JAN-04-2015	00:00:00
A	ntece	dent Di	ry Dag	ys	 0.0	
R	eport	Time S	Step		 00:05:00	
W	et Ti	me Step	· · · ·		 00:05:00	
D	ry Ti	me Ster			 00:05:00	
R	outin	g Time	Step		 30.00 sec	
V	ariab	_ le Time	e Ste	р	 YES	
M	aximu	m Tria	ls		 8	
N	umber	of Th	reads		 1	
Н	ead T	olerand	ce		 0.001500 m	

******	Volume	Depth
Runoff Quantity Continuity	hectare-m	mm

Initial Snow Cover	0.000	0.000
Total Precipitation	0.045	24.990
Evaporation Loss	0.000	0.000
Infiltration Loss	0.000	0.000
Surface Runoff	0.042	23.096
Snow Removed	0.000	0.000
Final Snow Cover	0.000	0.000
Final Storage	0.004	2.002
Continuity Error (%)	-0.435	

Volume	Depth
hectare-m	mm
0.226	124.268
0.000	0.000
0.000	0.000
0.000	0.000
0.000	0.000
0.000	0.000
0.226	124.268
0.000	
	Volume hectare-m 0.226 0.000 0.000 0.000 0.000 0.000 0.226 0.000

Purpose: Alignment with Ontario Stormwater Management Guidance

Objectives of Stormwater Management- 2003 MOECC Stormwater Manual

- 1. Maintain appropriate diversity of aquatic life and human uses Water Quality
- 2. Protect water quality *Water Quality*
- 3. Preserve groundwater flow and base flow Water Balance
- 4. Maintain natural hydrologic cycle Water Balance
- 5. Reduce combined sewer overflow *Volume Control*
- 6. Reduce flood damage- *Volume Control*
- 7. Reduce undesirable geomorphic change (erosion) *Peak Flow*
- 8. Increase climate change resiliency *All of the above for a change in climate*

Bioretention Demo

Kortright Bioretention

Kortright Bioretention

Kortright Bioretention

https://sustainabletechnologies.ca/app/uploads/20 16/08/BioVSTrench_TechBrief_July2015.pdf

Water Quality

	Bioretention Cell						
			Contaminant				
Water Quality Variable		Loads Out	Load Reduction				
	Loads In (g)	(g)	(%)				
Total Suspended Solids	7766.3	207.2	97				
Ammonia+ammonium - N	16.3	1.5	91				
Nitrate + nitrite - N	34.3	31.9	7				
Total Kjeldahl - N	71.7	24.9	65				
Total Nitrogen	101.8	56.4	45				
Total Phosphorus	21.8	1.9	91				

Function

- A conceptual design tool to help developers, consultants, municipalities and landowners implement sustainable stormwater management practices including LID.
- Reports on Water Quality, Peak flows (erosion control), Runoff Volume Control (Flood control); responds to changing climate inputs
- A more streamlined SWM tool for permitting and compliance process, utilizing EPA-SWMM.
- SWM Tool Tailored to Ontario Climate, Geology, and Stormwater Management Guidelines

Function: Integration

Developments

- 1. LID/GI Costing
- 2. Trees as GI/LID option

GI Costing

- Estimates construction and maintenance costs for Green Infrastructure (GI) practices within TTT
- Sets TTT apart from other SWM by assessing LIDs on both performance and cost
- Costing data and methodology derived from LID Life Cycle Costing Tool (STEP-2019)
 - RSMeans (widely-used construction and maintenance database), supplier quotes, experienced construction managers, LID Guide, literature sources
- Costing curves produced by LCCT express relationship between GI area and unit cost (\$/footprint area (m2))

LID Life Cycle Costing Tool (2019)

TableOfContents Bioretention EnhancedSwale VegFilterStrip GreenRoof InfiltrationChamber Infiltration

GI Costing

- Estimates construction and maintenance costs for Green Infrastructure (GI) practices within TTT
- Sets TTT apart from other SWM by assessing LIDs on both performance and cost
- Costing data and methodology derived from LID Life Cycle Costing Tool (STEP-2019)
 - RSMeans (widely-used construction and maintenance database), supplier quotes, experienced construction managers, LID Guide, literature sources
- Costing curves produced by LCCT express relationship between GI area and unit cost (\$/footprint area (m2))

LID Life Cycle Costing Tool (2019)

Bioretention life cycle cost vs project size

Look-Up Table

	Element in LID TTT	Options	Construction Cost Equation (\$/m2)	Oper./Maint. Cost Equation (\$/m2)
LID	Bioretention	No Underdrain With Underdrain	195 + 12328/A 230 + 17020/A	170 + 3038.9/A 170 + 3038.9/A
	Enhanced grass swale		79 + 6292/A	104 + 3554/A
	Vegetated filter strips		59 + 6555/A	90 + 1352/A
	Infiltration chamber	No Underdrain	238 + 12141/A	69 + 5581/A
	Infiltration trench	With Underdrain	321 + 11374/A	156 + 14731/A
	Permeable pavement	No Underdrain With Underdrain	235 + 27088/A 242 + 27088/A	34 + 321/A 45 + 321/A
Storage Node	Wet pond	Enhanced WQ protection	372 + 1543/A	445+ 0.00071/A
	Dry pond	No pre- treatment	178 + 1543/A	45 + 506/A
Junctions	OGS		157419 + 44318/A	Fixed cost: \$35,600
New	Trees in ground		TBD	TBD
addition s to LID TTT	Trees in soil cells		TBD	TBD

User-Interface

Table sho designed su "copy and pa excel would

struct

Can be filt columns: ca number, infrastructure default valu edited; dynamically s of elements

Look-Up Table

	Element in LID TTT	Options	Construction Cost Equation (\$/m2)	Oper./Maint. Cost Equation (\$/m2)
LID	Bioretention	No Underdrain With Underdrain	195 + 12328/A 230 + 17020/A	170 + 3038.9/A 170 + 3038.9/A
	Enhanced grass swale		79 + 6292/A	104 + 3554/A
	Vegetated filter strips		59 + 6555/A	90 + 1352/A
	Infiltration chamber	No Underdrain	238 + 12141/A	69 + 5581/A
	Infiltration trench	With Underdrain	321 + 11374/A	156 + 14731/A
	Permeable pavement	No Underdrain With Underdrain	235 + 27088/A 242 + 27088/A	34 + 321/A 45 + 321/A
Storage Node	Wet pond	Enhanced WQ protection	372 + 1543/A	445+ 0.00071/A
	Dry pond	No pre- treatment	178 + 1543/A	45 + 506/A
Junctions	OGS		157419 + 44318/A	Fixed cost: \$35,600
New	Trees in ground		TBD	TBD
additions to LID TTT	Trees in soil cells		TBD	TBD

Model Results

Ild be ch that ste" into naintain re		debuç Peak Flow debu	post-developm g_2.0.14_outle ug_2.0.14_outletTo	^{nent} tToCatchment oCatchment	8	GIS	Click to add scenario			
	Loading TSS debug_2.0.14_outletToCatchment Loading TP debug_2.0.14_outletToCatchment									
		Costing	Eva	aluation period	25 yea	irs				
red by chment reen type, and es/user otal ims costs		Name	Catchm ent Number	Green Infrastructu re Type ▼	Default Values/Use r Edited ▼	Constructi on cost	Annual Average Maintenan ce cost	25-year Maintenance Cost	Total life- cycle cost (excludes rehab)	Comments
		Bioretent ion1	1	Bioretentio n		\$85,143.34	\$1,620.72	\$40,518.00	\$125,661.00	
		Swale1	1	Enhance Swale		\$23,029.00	\$968.68	\$24,217.00	\$47,247.00	
merea		Total				XXXX		XXXX	XXXX	

Trees as a new GI/LID Option

Trees are a cost-effective GI with stormwater advantages + co-benefits (habitats, mitigate heat stress)

No other tool provides trees + LID at site scale in the Ontario context

Processes to model:

Tree Water Balance

RAINFALL INTERCEPTION

EVAPOTRANSPIRATION

GROSS PRECIPITATION

Canony Drin

Tree Canopy

Throughfall Area

 The percentage of tree canopy area generating throughfall can be estimated from the equation below (Wang, Endreny, & Nowak, 2008).

% *Throughfall* = $100(e^{-0.7*LAl})$

Intercepted Area

- Intercepted precipitation is temporarily stored on leaf surfaces (canopy storage) and eventually evaporated.
- The depth of canopy storage can be estimated using the equation below (Wang, Endreny, & Nowak, 2008).

Canopy Storage Depth (mm) = 0.2mm * LAI

User Interface

Soil Parameters

Two types of trees presented:

- 1. Trees planted in regular soil
- 2. Trees planted in soil cells

Defaults for surface/soil properties of regularly planted trees based on local guidance (soil type, depth of soil, etc.)

Defaults for soil properties of soil cells similar to bioretention guidance. Additional storage and underdrain functionalities available.

canopy parameters not affected by tree type selected

Model Output

Below the LID Summary in Output screen, table to provide for each tree element the amount:

- Infiltrated
- Runoff
- Evaporated
- Stored (bioretention and in pervious depression storage of the subcatchment)

Tree Element Name	Area (ha) (m²)	Infiltration (mm) (m ³)	Evapotranspired (mm) (m ³)	Runoff (mm) (m ³)	Stored (mm) (m ³)	Rainfall Reduction (mm) (m ³)

Thank You/ Questions?

Project Team

Steve Auger – LSRCA Alana Vandersluis – (LSRCA) Amanjot Singh – CVC Sakshi Saini – (CVC) Tim Van Seters – TRCA Sahlla Abbasi – TRCA Yuestas David – TRCA Wilfred Ho – TRCA

Upcoming Lunch and Learns

Tuesday, November 10 11:30am-12:30pm Latest Flood Plain Mapping Updates

By Wilfred Ho, Christina Bright and Mike Todd Tuesday, November 17 11:30am-12:30pm

Working with Indigenous Communities

By Tony Morris

Tuesday, December 8 11:00am-12:00pm Green Infrastructure Asset Management

By Michelle Sawka and Tracy Timmins

Thank you

For questions about the ECS Lunch and Learn Series, please contact:

Sharon Lam sharon.lam@trca.ca

