KEEPING THE BALANCE

Feature-based water balance in the planning process

SESSION 1: How do I know if I have to do an FBWB? And what is the right scope?

Presented by: Laura Del Giudice, B.Sc., M.F.C. Sr. Manager, Watershed Planning & Reporting

June 20, 2019

Environnement Canada

Session 1 Objectives

When does FBWB study occur within the planning process?

How do I scope a FBWB study using the *Risk Evaluation*?

What information and data are required?

What is the purpose of monitoring and When do I need to start?

How do I apply the *Risk Evaluation?*

Toronto and Region Conservation Authority

Risk Evaluation

- Approved by TRCA Board of Directors in November 2017
- One of a series of tools developed collaboratively with our External Stakeholder Committee
- Purpose is to clarify and help streamline approval process

WETLAND WATER BALANCE RISK EVALUATION

Toronto and Region Conservation Authority November 2017

Risk Evaluation: 4-Step Process

Feature-based Water Balance in the Planning Process

*Note: The scale and level of detail of information provided for the early planning stage will vary by municipal jurisdiction.

Decision Tree

High Risk

- Pre-development hydrology monitoring required
- Characterization of groundwater interaction emphasized
- Approved continuous hydrology model is required; integrated hydrology model may be required where GW-interaction is high
- Design mitigation plan to maintain water balance as outlined in SWM Criteria Document
- Interim mitigation plan may be required

Medium Risk

- Pre-development hydrology monitoring required
- Approved continuous hydrology model is required
- Design mitigation plan to maintain water balance as outlined in SWM Criteria Document
- Interim mitigation plan may be required

Low Risk

- Monitoring *not* required.
- Non-continuous hydrology model (e.g. Thornthwaite Mather / spreadsheet approach) required
- Design mitigation plan to maintain water balance as outlined in SWM Criteria Document

Decision Tree

High Risk

- Pre-development hydrology monitoring required
- Characterization of groundwater interaction emphasized
- Approved continuous hydrology model is required; integrated hydrology model may be required where GW-interaction is high
- Design mitigation plan to maintain water balance as outlined in SWM Criteria Document
- Interim mitigation plan may be required

Medium Risk

- Pre-development hydrology monitoring required
- Approved continuous hydrology model is required
- Design mitigation plan to maintain water balance as outlined in SWM Criteria Document
- Interim mitigation plan may be required

Low Risk

- Monitoring *not* required.
- Non-continuous hydrology model (e.g. Thornthwaite Mather / spreadsheet approach) required
- Design mitigation plan to maintain water balance as outlined in SWM Criteria Document

Decision Tree

High Risk

- Pre-development hydrology monitoring required
- Characterization of groundwater interaction emphasized
- Approved continuous hydrology model is required; integrated hydrology model may be required where GW-interaction is high
- Design mitigation plan to maintain water balance as outlined in SWM Criteria Document
- Interim mitigation plan may be required

Medium Risk

- Pre-development hydrology monitoring required
- Approved continuous hydrology model is required
- Design mitigation plan to maintain water balance as outlined in SWM Criteria Document
- Interim mitigation plan may be required

Low Risk

- Monitoring *not* required.
- Non-continuous hydrology model (e.g. Thornthwaite Mather / spreadsheet approach) required
- Design mitigation plan to maintain water balance as outlined in SWM Criteria Document

Risk Evaluation: 4-Step Process

- 1. Determine which wetland(s) will be impacted by the proposed development.
- 2. Determine the magnitude of potential hydrological change.
- 3. Determine the sensitivity of the wetland and its associated flora and fauna to hydrological change.
- 4. Integrate information from steps 2 and 3 to assign a level of risk that the proposed development poses to the wetland.

Step 1: Which feature(s) will be impacted?

Step 1: Which feature(s) will be impacted?

Exclusions – water balance not considered for:

- Lacustrine wetlands on Lake Ontario
- Riverine wetlands on streams of Strahler order ≥4, or with catchments >2500 ha
- Stormwater management ponds
- Wastewater polishing wetlands

Risk Evaluation: 4-Step Process

- Determine which wetland(s) will be impacted by the proposed development.
- 2. Determine the magnitude of potential hydrological change.
- 3. Determine the sensitivity of the wetland and its associated flora and fauna to hydrological change.
- 4. Integrate information from steps 2 and 3 to assign a level of risk that the proposed development poses to the wetland.

- Four evaluation criteria
 - Proportion of impervious cover proposed within catchment
 - Change in catchment size
 - Water taking from or discharge directly to connected surface water bodies or aquifers (best available info)
 - Impervious cover proposed in recharge areas

i. Proportion of impervious cover proposed in catchment

Criteria	High magnitude	Medium magnitude	Low magnitude
Impervious cover score (S) within catchment* *Determined using Equation 1	>25%	10-25%	<10%

$$S = \frac{IC \cdot C_{dev}}{C}$$

IC – impervious cover proposed on proponent's lands within catchment (0-100)

 C_{dev} – Area of catchment outside NHS (ha)

C – Total area of catchment (ha)

ii. Change in catchment size

Criteria	High magnitude	Medium magnitude	Low magnitude
Increase or decrease in catchment size	>25%	10-25%	<10%

Wetland catchment (Post-dev.)

Change = -25%

iii. Water taking from or discharge to directly connected surface water bodies or aquifers (best available info)

Criteria	High magnitude	Medium magnitude	Low magnitude
Water taking or discharge	Dewatering exceeding MECP EASR limits (>400,000 L/day) for >6 months anticipated	Dewatering within MECP EASR limits (50,000 - 400,000 L/day) for >6 months anticipated OR Dewatering exceeding MECP EASR limits (>400,000 L/day) for <6 months anticipated	Dewatering within MECP EASR limits (50,000 - 400,000 L/day) for <6 months anticipated

iv. Impervious cover proposed in recharge areas

Criteria	High magnitude	Medium magnitude	Low magnitude
Impact to recharge areas	Impact to >25% of locally significant recharge areas*	Impact to 10-25% of locally significant recharge areas*	No impact, or impact to <10% of locally significant recharge areas*
			Ū

Ecological Thresholds

Risk Evaluation: 4-Step Process

- Determine which wetland(s) will be impacted by the proposed development.
- 2. Determine the magnitude of potential hydrological change.
- 3. Determine the sensitivity of the wetland and its associated flora and fauna to hydrological change.
- Integrate information from step 1, 2, and 3 to assign a level of risk that the proposed development poses to the wetland.

Wetland Sensitivity Criteria

Criteria	High sensitivity	Medium sensitivity	Low sensitivity
Vegetation community type (ELC)*	Presence of a high sensitivity vegetation community	Presence of a medium sensitivity vegetation community	No high or medium sensitivity criteria satisfied
High sensitivity fauna species**	Presence of a high sensitivity species	Presence of a medium sensitivity species	No high or medium sensitivity criteria satisfied
High sensitivity flora species**	Presence of multiple high sensitivity species	Presence of multiple medium sensitivity species	No high or medium sensitivity criteria satisfied
		OR	
		Presence of one high sensitivity species	
Significant Wildlife Habitat	Presence of Significant Wildlife Habitat, as defined by OMNRF (2014), for high sensitivity species**	N/A	No high criteria satisfied
Hydrological	Isolated/palustrine	Isolated/palustrine	Riverine/lacustrine
classification considering ecology	AND	AND	
	Presence of medium or high sensitivity vegetation communities* OR medium or high sensitivity flora or fauna species**	No medium or high sensitivity vegetation communities* AND no medium or high sensitivity flora or fauna species** present	

Risk Evaluation: 4-Step Process

- Determine which wetland(s) will be impacted by the proposed development.
- 2. Determine the magnitude of potential hydrological change.
- 3. Determine the sensitivity of the wetland and its associated flora and fauna to hydrological change.
- 4. Integrate information from steps 2 and 3 to assign a level of risk that the proposed development poses to the wetland.

Decision Tree

What information and data are required?

- Magnitude of potential hydrological change
 - Wetland feature limits
 - Size + extent of pre development catchment
 - Total development area of catchment (i.e. area outside NHS)
 - Area of catchment owned by proponent

What information and data are required?

- Magnitude of potential hydrological change
 - % impervious cover proposed within proponent's lands
 - Proposed postdevelopment catchment extent / size
 - Approx. anticipated magnitude and duration of water taking
 - Location of any locally significant recharge areas

What information and data are required?

Sensitivity of wetland:

- Vegetation community type
- Fauna and flora present
- Habitat features
- Wetland hydrological type (isolated, palustrine, or riverine)

What is the purpose of monitoring?

- Monitoring of wetland hydrology required for medium & high-risk outcomes
- Wetland Water Balance Monitoring Protocol (TRCA, 2016)
- Informs conceptual model of wetland hydrology
- Used to calibrate continuous hydrology model (where required)
- Can inform adaptive management during & after construction

When do I need to start?

- Need to develop baseline 3
 years pre-development standard
- Capture range of weather conditions, seasons, annual maximum and minimums, etc.
- Provide enough data to calibrate AND validate model
- Proactive monitoring recommended to ensure expedited approvals

Risk Evaluation: Applied Example

Risk Evaluation: Applied Example

STEP 1: Determine feature protection through planning process Yes - feature to be protected

STEP 4: Risk assignment

High Risk

- Pre-development hydrology monitoring required
- Characterization of groundwater interaction emphasized
- Approved continuous hydrology model is required; integrated hydrology model may be required where GW-interaction is high
- Design mitigation plan to maintain water balance as outlined in SWM Criteria Document
- Interim mitigation plan may be required

Medium Risk

- Pre-development hydrology monitoring required
- Approved continuous hydrology model is required
- Design mitigation plan to maintain water balance as outlined in SWM Criteria Document
- Interim mitigation plan may be required

Low Risk

- Monitoring *not* required.
- Non-continuous hydrology model (e.g. Thornthwaite Mather / spreadsheet approach) required
- Design mitigation plan to maintain water balance as outlined in SWM Criteria Document

Risk Evaluation Summary

- Offers consistent basis for scoping FBWB studies; thresholds informed by best available science
- Best applied at earliest possible stage of planning process (as soon as application received by CA)
- Significantly clarifies the process and requirements to streamline approvals

Questions?

Toronto and Region Conservation Authority

Wetland catchment (C) = 10 ha Natural system area = 7.5 ha Development area (C_{dev}) = 2.5 ha A Landowner A holdings = 2.5 ha

Wetland catchment (C) = 10 ha Natural system area = 7.5 ha Development area (C_{dev}) = 2.5 ha A Landowner A holdings = 2.5 ha

- *S* Impervious cover **S**core
- *IC* proposed impervious cover on proponent's lands within catchment (0-100)

$$S = \frac{IC \cdot C_{dev}}{C}$$

$$S > 25 = \frac{100 \cdot 2.5}{10}$$

$$S > 10 = \frac{40 \cdot 2.5}{10}$$
(medium) $10 = \frac{40 \cdot 2.5}{10}$

$$S = \frac{IC \cdot C_{dev}}{C}$$

$$S > 25 = \frac{100 \cdot 2.5}{10}$$

$$S > 10$$

$$S > 10 = \frac{40 \cdot 2.5}{10}$$

$$Medium change threshold = 40 \% IC per ha$$

Toronto and Region Conservation Authority 47

IC per ha

change threshold

Development area (C_{dev}) = 2.5 ha A Landowner A holdings = 2.5 ha

High change threshold = 100 % IC per ha

Medium change threshold = 40 % IC per ha

Development area (C_{dev}) = 7.5 ha **A Landowner A holdings** = 7.5 ha

> High change threshold = 33 % IC per ha

Medium change threshold = 13 % IC per ha

Addresses cumulative effects

Medium change threshold = 13 % IC per ha

Addresses cumulative effects

Medium change threshold = 13 % IC per ha Same total imperviousness for given scope of study (i.e. med., high) within catchment, regardless of # of landowners

KEEPING THE BALANCE

Feature-based water balance in the planning process

Breakout Exercise #1 – Scoping an FBWB

Presented by: Laura DelGiudice Sr. Manager, Watershed Planning & Reporting

June 20, 2019

Environnement Canada

- Participants have 30 minutes to evaluate two (2) development proposal scenarios using the Risk Evaluation framework.
- Objective assign each proposal a risk category of low, medium, or high, with associated study requirements, based on site attributes.
- All necessary information & evaluation criteria provided.

- Each table provided with site map and data sheet. Data for the two scenarios are provided; only development proposal attributes change between scenarios, wetland attributes remain the same.
- After groups have had 30 minutes to evaluate the two development proposal scenarios, we will have 20 mins to discuss the process for assigning each scenario a risk category, and any areas of uncertainty or disagreement.

Evaluation Process: (as per Wetland Water Balance Risk Evaluation)

Step 1 – Determine feature protection (already completed)

Step 2 – Determine magnitude of hydrologic change

Step 3 – Determine sensitivity of feature

Step 4 – Evaluate risk outcome using decision tree (p. 7)

- Complete cells in data sheet indicated by and/or
- Record thought process / table discussion on back of data sheets